

フォーマット加工 - 縁貼り

本文

1.	. フォーマット切断の直角度	2
2.	. フォーマット切断の真直度	3
	パリ	
4.	· ・窪みカット	5
	. 刃跡	
	等距離性	
8.	エッジの凹凸	10

2022年9月9日

1. フォーマット切断の直角度

₹ .>	品質特徴	フォーマット切断の直角度		
向	定義	接合面ルーターまたはダブルカッターで狭面をフォーマットした後、フォーマットされた狭面と部材表面 (最上層側) の角度が 90° になっていること。目標角度 (= 90°) から外れている場合は正しくありません。		
とのように?	測定ツール	実用的 - 主観的: ・ 光漏れ測定 - 直角定規 理論的 - 客観的: ・ 座標測定機 ・ ハイトゲージ		
	測定方法	角度測定は、必ず両方のルーターモーター (DZ & FF) を組み合わせて行います。この 測定は、MDF 材および部材高さ 60 mm で同じ設定の、複数の部材 (最小 2) に対して実行します。 光漏れ測定 - 直角定規: 狭面の上から、狭面と部材表面の角度を測定します。下部と上部の切断面が同じ高さになっている必要があります (前提条件: 部材高さ 60 mm)。直角度のチェックは、少なくとも次の 4 箇所で実行します。 1 2 3 4 表面層 図 1 - フォーマット切断の直角度 座標測定機: CAD モデルによる自動の直角度チェック。 ハイトゲージ:		
	判断基準	部材厚みが 60 mm の基材の場合、直角度の許容範囲は ± 0.05 mm です。 光漏れ測定 - 直角定規: 光が漏れないか評価します。測定ツールと部材の間に明らかな光漏れがないこと (隙間がほぼ 0)。		

2022年9月9日

2. フォーマット切断の真直度

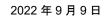
る 品質特徴 フォーマット切断の真直度 W カーマット切断の真直度		フォーマット切断の真直度
反 定義 部材長さに応じた狭面の真直度に関するフォーマット切って、		また、真直度は交換ルーター加工において、ルーター挿入時の衝撃の影響を受け
実用的 - 主観的: ・ 触感検査 (指で) ・ 光漏れ測定 - 直定規 / 直角定規 理論的 - 客観的: ・ 座標測定機		・ 触感検査 (指で)・ 光漏れ測定 - 直定規 / 直角定規理論的 - 客観的:
	測定方法	触感検査 (指で): 触感検査では、狭面の表面を指先でなぞって、凹凸を確認します。 光漏れ測定 - 直定規 / 直角定規: 偏差を確認するために、直角定規の一辺を基材表面に当てて、光漏れ測定をし、 狭面の真直度を測定します。これにより、フォーマット切断の真直度および平坦度を評価できます。 直角定規を使った光漏れ測定では、逆光にして、狭面の直線や非直線部分を見つけます。また、交換ルーター加工時の衝撃に注意してください。
	判断基準	真直度の許容範囲 (2 つの平行する面に限定) は ± 0.05 mm です。 光漏れ測定 - 直定規/ 直角定規: フォーマットされた狭面と直角定規の間の光漏れを視覚的に判断し、明らかな光 漏れがないこと (隙間がほぼの)。 座標測定機: 真直度の許容範囲は ± 0.05 mm です。

ي	品質特徴	狭面のバリ		
向を	定義	狭面の切削加工時に、切り損ねた木屑や繊維、繊維片によって、表面にささくれのようなバリが発生することがあります。これは、刃の形状、刃の摩耗、および繊維の切断方向によって発生します。 このような現象は、基材によって影響の大きさが異なります。		
どのように?	測定ツール	実用的 - 主観的:		
		理論的 - 客観的:		
測定方法 次の項目・		次の項目を特に重点的に確認してください。		
		目視および触感検査: フォーマットされた狭面全体にわたって視覚的および触覚的に部材をチェックします。目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と見なされます。		
		測定ルーペ (倍率 5 倍): 目視検査と同様に、測定ルーペを使用して突出した繊維を探すこともできます。		
		デジタル顕微鏡 / USB 顕微鏡: 目視検査と同様に、顕微鏡を使用して、突出した切りくずや繊維を探すこともできます。この場合は、結果をじっくり観察し、画像で記録できます。		
	判断基準	狭面全体に木屑や繊維片が明らかに見えたり、手触りで感じられたりしないこと。		

2022年9月9日

<u>4. 窪みカット</u>

۲.	品質特徴	窪みカット
向各	定義	窪みカットの形状と位置は、密閉された縁貼りの基礎となります。接合面ルーターでもダブルカッターでも、狭面内に窪みカットを行います。窪みカットでは、接着接合部が狭くなります。
どのように?	測定ツール	実用的 - 主観的:
	測定方法	窪みカットの検査には、高さ 38 mm 以上の MDF 基材を使用します。 直角定規 / 直定規での光漏れ測定: 直角定規の一辺を基材表面に当てて、光漏れ測定をし、狭面の偏差を測定します。 このようにして窪みカットを判断します。 直定規を使った光漏れ測定では、逆光により窪みカットの形状をチェックします。 ハイトゲージ: ハイトゲージで窪みカットを正しく測定できるように、部材にカッピングがないこと。
	判断基準	窪みカットが、必ず狭面の中央 (対称) に配置されていること。 作成した窪みカット = 0.067 mm (40 mm MDF プレート; 4014021260) 作成した窪みカット = 0.017 mm (20 mm MDF プレート; 4014021260)



<u>5. 刃跡</u>

٠.	品質特徴	刃跡
何を?	定義	フォーマットされた狭面には、刃跡と呼ばれる波状の加工跡があります。 刃跡の深さ t がわずかでも (μm の範囲)、散乱光を当てるとよく確認できます。これは斜めに当てた光を散乱させて、影を生み出すためです。 多刃ツールの場合、公差があるため仕上げ面にはどれか 1 つ刃の跡のみが付きます。「短い」刃は木屑処理の一部を担いますが、長さが短いため部材には跡を残しません。ツールと部材の間の振動も原因となる可能性があります (面振れは非常に重要です)。
		A A A A A M M A A A A M M A A A A M M A A A A M M A A A A M M A A A A A A M M A
		刃跡はその長さと深さで判断します。
そのように?	測定ツール	実用的 - 主観的:

7/55 ページ 2022 年 9 月 9 日

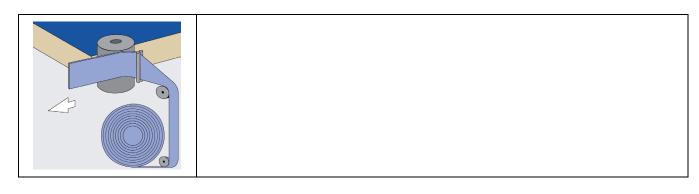
測定方法	基材が MDF と無垢材の場合のみ、フォーマットされた部材の刃跡を評価できます。理想的なケースでは、プラスチック材も使用できます。送り速度 20 m/分で測定します。この測定方法では、2 つのパラメータが区別されます: 刃跡の長さ
	刃跡の深さ 表面粗さ = $\frac{fZ_{eff}}{4*d}$
判断基準	光学ツールを使用せずに波形の刃跡が見える場合、部材は「不良」と見なされ ます。

c. 品質特徴 等距離性 N		等距離性 	
向	定義	接合面ルーターでは狭面の部材幅全体、ダブルカッターでは部材長さ全体が等距離であること。 複数のルーターが規則的に並んだツールは、狭面において 2 つの切削セグメントが重なる範囲に、小さな段差や長さのずれが発生する可能性があります。加工モーター同士の深さは特に重要です。ダブルカッターを使用する場合、このような移行部分は狭面幅の方向に発生し、接合面ルーターを使用すると狭面の長さ方向で発生します。	
どのように?	測定ツール	実用的 - 主観的: ・ 直角定規 / 直定規での光漏れ測定 ・ 触感検査 (指で) 理論的 - 客観的: ・ デジタル顕微鏡	
	測定方法	ダブルカッター: 高さ 38 mm 以上の部材の狭面で測定。接合面ルーター: フォーマットされた狭面で、部材長辺方向に測定。触感検査(爪で): 触感検査では、特に移行部の表面を繊維と逆方向に指先でなぞって確認します (猫の毛効果)。 直角定規 / 直定規での光漏れ測定: 直定規または直角定規を使用した光漏れ測定では、狭面で両方の加エモーターの切断面の間に偏差がないか逆光により確認します。 デジタル顕微鏡: 光漏れ測定と同様に狭面の等距離性をデジタル顕微鏡でフラットな角度と逆光を用いて確認し、記録します。	
	判断基準	2 つの加工モーターの移行範囲で、目に見える堆積 (重なり合う領域でのコントラストの変化) も触覚で感じられる移行部 (段差) もないこと。 ダブルカッター: 視覚的にも測定機器でも、移行部に部材高さを超える段差が認められないこと。 接合面ルーター: 視覚的にも測定機器でも、移行部に部材長さを超える段差が認められないこと。	

2022年9月9日

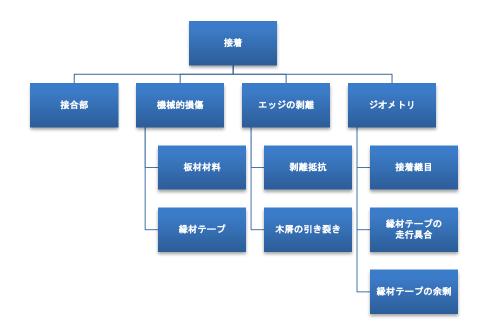
7. 亀裂や剥離がない

٠.	品質特徴	亀裂や剥離がない
何を	定義	部材の端で刃先が出る際、加工力にその面が耐えられなくなると亀裂が生じるおそれがあります。無垢材の場合、これは特に横方向でへの加工時に発生します。特に、工具が切断方向に狭面から出るポイント (例えば部材のコーナーから出るときは逆方向) では、部材が欠けたり、ひびが入ったりする可能性があります。また、前の加工ステップで作成した横方向のエッジが剥がれる危険もあります。
	基本	VDI 3414 シート 1
のように?	測定ツール	実用的 - 主観的:
ม	測定方法	補助具を使わない目視検査 部材のフォーマット切断を、明るい照明のもと (特にエッジとコーナー範囲に注意) 目視で確認します。目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と見なされます。 触感検査 (指で) 触感検査では、(特に移行部の) 狭面を繊維と逆方向に指先でなぞって確認します (猫の毛効果)。
	判断基準	狭面全体とコーナーに亀裂が見当たらない、感じられないこと。さらに、狭面から表面層や横エッジに向かって亀裂や剥離がないこと。


8. エッジの凹凸

	D FE 4+ AL		
بى الحد	品質特徴	切断エッジの凹凸 (= エッジの破損)	
何を	定義	コーティングされたパネルを使用すると、特に狭面をフォーマットする際に 装飾層の一部が剥がれる可能性があります。コーティングは硬くて脆いのに 対し、基材は柔らかい素材です。切削加工時に摩擦力や切削力が複合材料に加えられると、コンポーネントにはさまざまな大きさの応力とひずみが発生します。特徴的なエッジの凹凸 (エッジ長辺での破損面) は、次のタイプに分類できます。 エッジの増大 ・ 膨らみ ・ 裂け目 ・ 破損 ・ 装飾層の剥離 ・ 装飾層の乳離 ・ 装飾層の看裂 **** **** **** **** *** *** *	
	別ウツ コ		
27	測定ツール	実用的 - 主観的: 	
10		• 測定ルーへ (信率 5 信) • こする	
そのよ		_ , •	
<u> </u>		実用的 - 客観的:	
		• 評価尺度付き境界サンプル (HOMAG Panel Dividing)	
		理論的 - 客観的:	
		• 輪郭測定機 (EQUAM、形状テスター)	
		• USB 顕微鏡	
		・ デジタル顕微鏡 ・ レーザー測定システム	
		・ 光学測定システム MSQ (HOMAG Panel Dividing)	
		· ·	

11/55 ページ 2022 年 9 月 9 日


測定方法	測定ルーペ: 測定ルーペを使用して、エッジ範囲 50 mm ごとにさまざまなタイプの凹 凸を確認します。
	こする: エッジの凹凸を手動で測定するには、こすって模様を確認します。その際、例えば黒鉛の棒を使用します。切断エッジ表面に圧力を加えてこすると、色の粒子がエッジの凹凸に付着し、凸凹が認識しやすくなります。
	評価尺度付き境界サンプル (HOMAG Panel Dividing): HOMAG Panel Dividing - 評価尺度付き境界サンプル 1〜4 を使用します。
	デジタル顕微鏡: 測定ルーペと同様にエッジの凹凸を、デジタル顕微鏡を使用して確認することもできます。この場合は、結果をじっくり観察し、画像で記録できます。
判断基準	指定された測定機器を使用し、部材全長にわたって、エッジ範囲に凹凸が視 覚的に認められないこと。

接着 - 縁貼り

本文

9. 接合部	13
10. 機械的損傷	14
10.1 板材材料	
10.2 縁材テープ	15
11. エッジの剥離	16
11.1 剥離抵抗	
11.2 木屑の引き裂き	17
12. ジオメトリ	18
12.1 接着継目	18
12.2 縁材テープの走行具合	19
12.3 縁材オーバーハング	20



13/55 ページ

2022年9月9日

9. 接合部

	口质料土油	拉入切 / 拉美刘により完全を拉入)
を?	品質特徴	接合部 (接着剤による完全な接合)
	定義	パネル材料と縁材の間 (または縁材と縁材の間) の接着接合部にある、
		表面に見える欠陥または空洞 (凹みおよび貫通した空洞)。
回		水蒸気を通さないコーティングにするには、接触する表面を接着
		ゾーンとして十分に活用する必要があります。
	規格	-
	測定ツール	実用的 - 主観的:
		● 測定ルーペ (倍率 5~10 倍)
		● 浸透探傷検査
		こする
		● 色鉛筆テスト (水性マーカー)
		理論的 - 客観的:
		● 顕微鏡 (デジタル / USB)
	測定方法	測定ルーペ (倍率 5~10 倍):
		2 番目 (製造) 以降の部材の両面、つまり部材の上側と下側を、明るい
		部屋で 90°の角度から倍率 5 ~10 倍で検査します。
		浸透探傷検査:
		接着接合部の目に見える部分を、最初に特別なクリーナー (MarkerR
5125		MR79) で清掃し、次にパーマネントレッド (MarkerR MR68NT) をス
10		プレーします。その後 3 分間待ち、パーマネントレッドをペーパータ
98		オルで拭き取り、現像液 (MarkerR MR70) を塗布します。欠陥は、接
ピグ		着接合部に赤い点として表出します。
		Algument me o cam out to
		こする / 色鉛筆テスト:
		接着接合部の可視部分に (黒鉛の棒や水性マーカーなどで) 圧力を加え
		てこすると、潜在的な欠陥箇所 (開口部) に色の粒子が溜まります。こ
		れにより、欠陥箇所をはっきりと特定でき、正確に測定できます。
		THE STATE OF THE S
		顕微鏡 (デジタル / USB):
		外観検査と同様に、接着接合部の接合度合いもデジタル顕微鏡で確認
		できます。さらに、発生した欠陥を測定し (例えば、50 mm ごとの欠
		陥の平均値)、記録することができます。
	 判断基準	接着接合部が完全に閉じていること。
	THE	指定された測定機器を使用して、部材の接着接合部に欠陥や空洞が視
		覚的に認められないこと。
	l .	

10.1 板材材料

	品質特徴	パネル材の機械的損傷
	定義	指定の品質でフォーマット加工を終了した後、パネル材に損傷が視
		覚的に認められないこと。
		パネル材の表面層にグルーローラの圧力がかかることで発生する機
₹ .>		械的損傷に特に注意を払います。
回		パネル材の機械的損傷の特徴は、次のタイプに分類できます。
		● 表面層の隆起/膨らみ
		● 剥離や破損
		● 隙間
	規格	-
	測定ツール	実用的 - 主観的:
		● 補助具を使わない目視検査
		● 測定ルーペ (倍率 5~10 倍)
		四条约 克知的
		理論的 - 客観的: ● 顕微鏡 (デジタル / USB、倍率 200 倍まで)
		・
	则足刀压	│ 柵助兵を使わない自祝候重. │ パネル材に特に注意して、部材の全長と両面を目視検査します。目 │ │
		祝検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に
(=?		不良と見なされます。
35		1 KC 36.8 C 108 7 8
ወよ		測定ルーペ (倍率 5~10 倍):
ドラ		2 番目以降の部材の両面、つまり部材の上側と下側を、明るい部屋
~		で 90°の角度から倍率 5 ~10 倍で検査します。
		デジタル顕微鏡 / USB 顕微鏡:
		目視検査と同様ですが、測定補助機能やエラー測定および記録機
		能を備えています。
	判断基準	指定された測定機器を使用し、部材全体にわたって、接着接合部に
		直接接続するパネル材の部分 (エッジ範囲) で目に見える損傷がない
		こと。

10.2 縁材テープ

	品質特徴	縁材テープの機械的損傷
何を?	定義	マガジン (縁材テープガイドなど) や縁材テープコンベヤ、圧力ゾーン は、縁材テープの表面に機械的損傷を与える可能性があります。 さらに、圧力ゾーンでは、始動レーン (ポイント 4) の後で前エッジが 押しつぶされる可能性があります。 縁材テープの機械的損傷の特徴は、次のタイプに分類できます。
	規格	-
	測定ツール	実用的 - 主観的: 補助具を使わない目視検査 測定ルーペ (倍率 5~10 倍) 直定規での光漏れ測定 理論的 - 客観的: デジタル顕微鏡 USB 顕微鏡 (倍率 200 倍)
どのように?	測定方法	補助具を使わない目視検査: 縁材テープに特に注意して、部材の全長を視覚的に評価します。目視 検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良 と見なされます。 測定ルーペ (倍率 5~10 倍): 2 番目 (製造) 以降の部材の上側と下側を、明るい部屋で 90°の角度 から倍率 5~10 倍で検査します。 直定規での光漏れ測定: 直定規を使った光漏れ測定では、逆光にして縁材テープの表面に傷が あるかどうか確認します。 デジタル顕微鏡 / USB 顕微鏡: 目視検査と同様ですが、測定補助機能やエラー測定および記録機能を 備えています。
	判断基準	指定された測定機器を使い、狭面全体、つまり部材の縦方向や横方向 にある狭面の縁材テープに損傷が視覚的に認められないこと。

15/55 ページ

2022年9月9日

11.エッジの剥離

11.1 剥離抵抗

	品質特徴	エッジの剥離 - 剥離抵抗
	定義	剥離抵抗は、接着接合部に垂直に測定した試験片の幅あたりの平
Ç.		均応力を表します。つまり、試験片として接着した 2 つの接合
百		材 (パネル材 - 縁材テープ) を連続的に引き剥がすのに必要な力
#		です。
	規格	• DIN EN 1464
		● エッジ剥離試験の方法
	測定ツール	理論的 - 客観的:
		● 材料試験機
		(引張試験機 MPK SPZ 3K など)
	測定方法	トラバース送り速度 100 mm/min、最低剥離距離 200 mm で縁
		材テープを一定距離剥離します。
٠.		剥離距離の最初と最後の 10% を無視した平均剥離抵抗を評価
ジ		します。
	stat Not + 2#	
9 %	判断基準 	サンプル幅 1 mm あたりのニュートン値として、次の平均剥離
کٽ		カ (N/mm) を達成すること:
		>= 3 N/mm
		7 - 0 14/11IIII
		剥離ではなく、基材が破損した場合 (テスト中に縁材テープが破
		損) は合格とします。
		,

16/55 ページ

11.2 木屑の引き裂き

品質特徴	エッジの剥離 - 木屑の引き裂き
定義	剥離した部材で、縁材テープの粘着面が木屑で覆われているかを
	評価します。
	これは、基材と縁材テープ間の境界層および接着接合部の強度を
	評価することを目的としています。
規格	-
測定ツール	実用的 - 主観的:
	● 補助具を使わない目視検査
````	
測正力法	補助具を使わない目視検査:
	木屑の引き裂きの評価は、剥離した縁材テープで行います。そこ
	で、縁材テープの裏面が木屑で覆われている程度を調べます。目
	視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合
	に不良と見なされます。
	1-12-38 3. 243 3. 7 6
判断基準	剥離した縁材テープが接着剤とパネル材の木屑/繊維で 100 % 覆
	われている場合、接着は非常に良好であると評価できます。
	規格 測定ツール 測定方法

2022年9月9日

# <u>12. ジオメトリ</u>

### 12.1 接着継目

	品質特徴	ジオメトリ - 接着継目
何を?	定義	定義された測定点を使用して、部材全長の接着接合部の幅を決定するための接着接合部の寸法 (部材の上側と下側) の測定。前エッジと後エッジのつぶれには特に注意します。
	規格	-
どのように?	測定ツール	実用的 - 客観的:
	測定方法	接着接合部の測定点 A~G (図 1 - 接着接合部の幅の測定 を参照) で測定すること。 測定点 B~F から数式 $\bar{x} = \frac{B+C+D+E+F}{5}$ を使って平均値を算出します。 外側の測定点 A と G は、平均値計算で考慮しません。これらの測定点は、特に引き動作や KAL の圧力の影響を受けるからです。
		送り方向 ×/2 ×/4 ×/4 ×/4 ×/4 ×/4 ×/4 W 接着部 パネル/表面層
		図 1 - 接着接合部の幅の測定
	判断基準	<ul> <li>A およびG ≥ 0.5 * x̄</li> <li>x̄ - 20% ≤ 測定値B ~ F ≤ x̄ + 20%</li> <li>上側と下側の差 ± 20%</li> <li>測定値 A~G は可能な限り小さいこと (原材料によって異なる)、B~F は EVA を使用する場合は 0.15 mm、PU を使用する場合は 0.1 mm を超えないこと。</li> <li>使用する基材: チップボード EN 312 P2 38 mm (Egger P2 など)。</li> </ul>

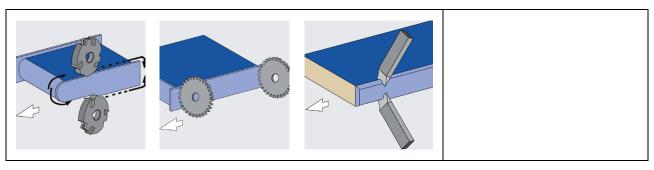


2022年9月9日

**HE HOMAG** 

### 12.2 縁材テープの走行具合

	品質特徴	ジオメトリ - 縁材テープの走行具合
回を?	定義	部材全長の上側と下側で縁材テープの余剰と走行具合を測定します。
	規格	-
	測定ツール	<ul><li>実用的 - 客観的:</li><li>・ ゲージ</li><li>理論的 - 客観的:</li><li>・ ノギス / デプスゲージ</li></ul>
どのように?	測定方法	ゲージ: 偏差の評価に、ゲージを作成します。 ノギス / デプスゲージ: 部材全長の上側と下側で縁材テープの余剰を測定し、押さえボードなしのパネルで縁材テープの走行具合を全長にわたって評価します。  ***********************************
	判断基準	縁材テープを正しく使用するために、次の点に注意してください。
		エッジ材テープ高さ [mm] = パネル厚み + 4 mm
		ゲージ: 部材とゲージで偏差が認められないこと。
		ノギス / ダイヤルゲージ / デプスゲージ: 縁材テープの走行における許容範囲: ± 0,5 mm

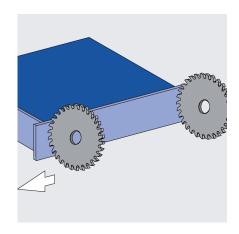


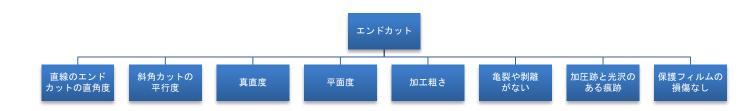

2022年9月9日

### 12.3 縁材オーバーハング

	品質特徴	ジオメトリ - 縁材オーバーハング		
何を?	定義	部材の前エッジと後エッジに対する長辺方向の縁材オーバーハン グの測定と評価。		
	規格	-		
	測定ツール	理論的 - 客観的: ● ノギス / デプスゲージ		
	測定方法	ノギス / デプスゲージ: 前エッジと後エッジに接着された縁材の余剰を測定。		
		前エッジ VK HK		
どのように?		エッジ 部材 図 3 - 縁材テープの余剰部		
	判断基準	ノギス / ダイヤルゲージ / デプスゲージ: この方法では次の許容範囲が決められています。		
		接着方法 前エッジ 後エッジ		
		接着部 5 mm ± 2.0 mm 5 mm ± 2.0 mm		
		laserTec 10 mm ± 2.0 mm 20 mm ± 2.0 mm		
		airTec       20 mm ± 2.0 mm       30 mm ± 2.0 mm         各 20 m/Min 時。送り速度		

# 仕上げ加工 - 縁貼り





#### <u>本文</u>

13. エンドカット	22
	23
13.2 直線のエンドカットの直角度	24
13.3 エンドカットの真直度 (縁材厚み ≤ 3 mm)	25
13.4 エンドカットの平面度 (縁材厚み > 3 mm)	26
13.5 加工粗さ	27
13.6 亀裂や剥離がない	28
13.7 エンドカットの加圧跡と光沢のある痕跡	29
13.8 保護フィルムの損傷なし	30
<u>14. ラウンドトリミング</u>	31
	32
14.2 起伏	
14.3 刃跡	34
14.4 振り上がりによるビビリマーク	35
14.5 加工粗さ	36
14.6 垂直の加工移行部	37
14.7 水平の加工移行部	38
14.8 縦横エッジの面ー	39
14.9 ラウンドトリミングでの加圧跡と光沢のある痕跡	40
14.10 亀裂 (木製縁材の場合)	
14.11 保護フィルムの損傷なし	42
<u>15. プロファイルおよび接着接合部のスクレーパー</u>	43
	43
15.1.1 プロファイル終端の均一性	43
15.1.2 表面の質	44
15.1.3 亀甲割れ	45
15.1.4 スクレーパーチップの発生	46
15.1.5 プロファイルならい時の加圧跡と光沢のある痕跡	47
15.1.6 均一な加工	48
15.1.7 起伏	49
15.1.8 後エッジのチップ除去	50
15.1.9 縁材から表面層への移行部	51
15.2 接着接合部のスクレーパー	52
15.2.1 表面層の損傷なし	52
15.2.2 接着接合部の範囲に接着剤の残渣がない	53
15.2.3 接着接合部スクレーパー時の光沢のある痕跡	54
15.2.4 保護フィル人の指傷なし	

22/55 ページ 2022 年 9 月 9 日

### <u>13. エンドカット</u>





2022年9月9日

### 13.1 斜角カットの平行度

を?	品質特徴	斜角カットの平行度
	定義	斜角カット時に斜角面の平行度を評価します。
		斜角面の大きさは、縁材テープの厚さに応じて設定されていること。斜角面の
白		両方のエッジが、縁材テープの全高にわたって平行で等距離になっていること。
	規格	-
	測定ツール	実用的 - 主観的:
		● 補助具を使わない目視検査
		● 測定ルーペ (倍率 5~10 倍)
		理論的 - 客観的:
		● デジタル顕微鏡
		● USB ルーペ
	測定方法	平行度を評価するには、部材厚みが 38 mm 以上のテストサンプルを使用する
		必要があります。
		補助具を使わない目視検査:
		斜角カットの平行度は、良好な照明の下で視覚的に検査します。目視検査では、
		50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と見なされます。
ر.		測定ルーペ:
IJ		目視検査に加えて、測定ルーペを使って平行度を詳しく調べることができます。
んよ		ごご ケル 時後を
9		デジタル顕微鏡:   客観的で再現性のある結果を得るためには、デジタル顕微鏡を使用して平行
کد		各観的で再現任のめる結果を待るためには、アクダル顕微鏡を使用して平1]     度を測定し、記録します。
	 判断基準	
	刊断基準	補助具を使わない目視検査:
		斜角面の平行線が、部材高さと視覚的に同じであること。
		補助具あり:
		部材厚み 38 mm 以上のテストサンプルの平行線において、偏差が 0.05 mm を
		超えないこと。
		// 0,05mm

2022年9月9日

### 13.2 直線のエンドカットの直角度

	品質特徴	直線のエンドカットの直角度
何を?	定義	フラッシュおよびストレートエンドカット時の直線のエンドカットの直角度の
		評価。
1	+0 +4	この評価は、すべての縁材に適用されます。
	規格 測定ツール	-   実用的 - 主観的:
	例にノール	美用的 - 王観的.
		理論的 - 客観的:
		● デジタル顕微鏡 ************************************
	`□I	● 測定機 (KMG など)
	測定方法	直角定規による光漏れ測定:   直角定規を使った光漏れ測定では、偏差を測定するために、直角定規の一辺を
		基材表面に 90° で当てて、もう一辺でエンドカットの角度をチェックします。
		このようにして、エンドカットの直角度を評価します。
		0.05
5=1		
うに		
4		
どの		
		図 4 - 直線のエンドカットの直角度
		測定機 (KMG):
	判断基準	CAD モデルによる自動の直角度チェック
	刊例基件	直角に残による元編れ例と。   直線のエンドカットの直角度が直角定規と視覚的に同じであること。
		測定機 (KMG):
		直角度が、測定技術上、次の許容範囲を超えないこと。
		WD (部材厚み) <= 22 mm → 許容範囲 = 0.05 mm     ND → 対容範囲 = 0.10 mm
		• WD > 22 mm → 許容範囲 = 0.10 mm

2022年9月9日

# 13.3 エンドカットの真直度 (縁材厚み ≤ 3 mm)

を?	品質特徴	エンドカットの真直度 (縁材厚み ≤ 3 mm)
	定義	フラッシュおよびストレートエンドカット後のエンドカットの真直度の評価。
		エンドカットのエッジ表面に凸凹が認められないこと。
宣		真直度は、厚さ 3 mm 以下の縁材のみ対象です。
	規格	-
	測定ツール	実用的 - 主観的:
		● 直定規による光漏れ測定
		田奈伯 京知伯
		理論的 - 客観的:
	测点士士	● 測定機 (KMG)
	測定方法	真直度の評価には、3 mm 以下の縁材のみを使用できます。
		直定規による光漏れ測定:
		直足が1~6~0元/m10例と.
		│ │この光漏れ測定では、基面の長辺に直定規を当てて、エンドカットの偏差を確 │
		認します。これにより、エンドカットの真直度および平坦度を評価できます。
5123		
5		
9 2		
ピピ		
~		
		図 5 - エンドカットの真直度
		測定機 (KMG):
		CAD モデルによる自動の真直度チェック。
	判断基準	光漏れ測定 - 直定規:
		エンドカットの真直度が部材高さと視覚的に同じであること、明らかな光漏れ
		が確認できないこと。
		測定機 (KMG):
		エンドカットの真直度が、3mm 以下の縁材テープで測定技術上 0.05mm を
		超えないこと。

2022年9月9日

# 13.4 エンドカットの平面度 (縁材厚み > 3 mm)

	品質特徴	エンドカットの平面度 (縁材厚み > 3 mm; 厚い縁材)
زخ	定義	フラッシュおよびストレートエンドカット後のエンドカット面の平面度の評価。 そこで、エンドカットの表面に凸凹が認められないこと。
百を		平面度は厚さ 3 mm を超える縁材 (厚い縁材) にのみ該当します。
	1=15	
	規格	
どのように?	測定ツール	実用的 - 主観的: ● 直定規 / 直角定規による光漏れ測定
		理論的 - 客観的: ● 測定機 (KMG)
	測定方法	平面度の品質機能は、3 mm を超えるエッジでのみ評価できます。可能であればエンドカットの平面度を、20 x 60 mm の厚い縁材で測定し、それ以外の場合は、できる限り厚い縁材テープで測定します。
		光漏れ測定 - 直定規 / 直角定規: 直定規を使った光漏れ測定では、逆光にして平坦か凸凹かどうか確認します。 エンドカットの面に図のように線を引いて、8 方向から測定します。
		図 6 - エンドカットの平面度
		KMG - 測定機: CAD モデルによる自動の平面度チェック。
	判断基準	光漏れ測定 - 直定規: 逆光を使い、厚い縁材と直定規の間で光漏れがあるか、各方向および全体で視 覚的に評価します。この際、明らかな光漏れが視覚的に認められないこと。
		測定機 (KMG): エンドカットの平面度における許容範囲は最大 0.05 mm です。

2022年9月9日

### 13.5 加工粗さ

	品質特徴	エンドカットの加工粗さ
を?	定義	指定の刃で加工する場合、エンドカットの表面の粗さ (刃跡、歯の噛み合いの
		痕跡、繊維、溝など)は、刃の凹凸によって発生し、エンドカットにカッティン
		グマークとして現れます。
何る		
		ABS や木製のエッジの場合は加工跡やカッティングマークが現れますが、PP     のエッジの場合は滑る傾向があります。
		のエックの場合は有る傾向がのうよう。
	規格	● VDI 指針 3414 シート 1
	測定ツール	実用的 - 主観的:
		● 触感検査 (指で)
		● 測定ルーペ (倍率 5~10 倍)
		● 直定規での光漏れ測定
		   理論的 - 客観的:
		● 粗さ測定機
		● デジタル顕微鏡 (+ 暗視野照明)
	seide I al	
	測定方法	触感検査 (指で):
		触感検査では、エンドカットの表面を指先でなぞって、凹凸を確認します。
どのように?		測定ルーペ (倍率 5~10 倍):
		部材のエンドカットを明るい照明のもと 90°の角度から倍率 5~10 倍で検
		査します。
		火温を測点。赤白根、
		光漏れ測定 - 直定規:   光漏れ測定では、直定規をエンドカットに当てて、偏差を確認します。その際、
		ガ痛も例だでは、直に残さエントカットに当てて、偏差を確認しより。その際、    逆光でエンドカットの加工粗さを評価します。
	判断基準	エンドカットの加工粗さにおける境界値は Rz = 25 です。
		なばかま(セン)
		触感検査 (指で)   触って、エンドカットに明らかな粗さを認めないこと。
		755 ノ C 、 エンドカッドに切りかは他でを認めないこと。
		測定ルーペ
		測定ルーペを使い、エンドカットに明らかな粗さを認めないこと。
		火温を測点。赤白田
		光漏れ測定 - 直定規
		直定規と逆光を使い、明らかな粗さを認めないこと。

28/55 ページ 2022 年 9 月 9 日

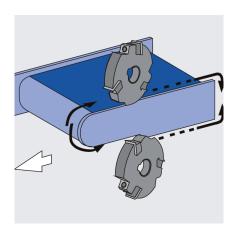
### 13.6 亀裂や剥離がない

	- sc (1 / M)	
	品質特徴	<b>亀裂や剥離がない</b>
	定義	材料や切断形状、工具の摩耗、繊維の切断方向に応じて発生する、目や指で感
		じられるエンドカット上に突出した繊維、縁材テープの亀裂や剥離。
		   亀裂と剥離で次の 2 つの状態は区別されます。
<i>₩</i>		
巨		● プラスチックの縁材テープ材 (PP&ABS) の場合は、縁材テープの上
<u> =</u>		下方向、特にコーナーでの破損。
		<ul><li>木材やメラミンの縁材テープの場合は、エンドカットのエッジ範囲に</li></ul>
		発生した亀裂。
		カエットでもが。
	 規格	-
	測定ツール	実用的 - 主観的:
		★/
		● 触感検査 (指で)
	測定方法	補助具を使わない目視検査:
		部材のエンドカットを、明るい照明のもと特にエッジとコーナー範囲に注意し
		て目視で確認します。目視検査では、50 cm の視距離から 30 秒以内に肉眼
		で見える場合に不良と見なされます。
(= 5		て元だる場合に主義と元などがあり。
10		一個
74		触感検査 (指で):
6		目視検査に加えて、表面を切断方向と逆に指先でなぞることで、亀裂の構造に
کٹ		より繊維や繊維の一部が再び起きます。これらの繊維が指先のしわや指紋に
		引っ掛かり、感じ取りやすくなります (猫の毛効果)。
	判断基準	補助具を使わない目視検査 / 触感検査:
		エンドカットの高さ全体にわたって、亀裂が視覚的および触覚的に認められな
		いこと。
		いここ。   さらに、エンドカットから表面層へ向かって亀裂や剥離がないこと。
		♂りに、エノトルツトかり衣山眉へ門かつし毛袋や羽離かはいこと。 

2022年9月9日

#### 13.7 エンドカットの加圧跡と光沢のある痕跡

	品質特徴	エンドカットの加圧跡と光沢のある痕跡
	定義	縁材テープの加圧跡と光沢のある痕跡ならびにエンドカットストッパー (プロ・ブエレスント) による部材スカッン時の麻痺による形状傷差
		ローブエレメント) による部材スキャン時の摩擦による形状偏差。
رم.		加圧跡と光沢のある痕跡の違い:
回外		● 加圧跡は、前エッジや後エッジにあるエンドカットストッパーが原因 で、特にエンドカットストッパー立っている場合に発生します。
		● 光沢のある痕跡は、エンドカットストッパーや面取りエンドカットス
		トッパーを引くときに発生します。暗く光沢のある色合いでこの効果 が強調されることに注意してください。
		-
	測定ツール	実用的 - 主観的:
		● 補助具を使わない目視検査
		● 測定ルーペ (倍率 5~10 倍) ● 触感検査 (指で)
	測定方法	補助具を使わない目視検査:
		│縁材テープ付き部材を、逆光 / 散乱光 (自然光 / 直射日光) で視覚的にチェッ│ │クします。光沢は、滑らかな表面上で光が強く反射するのが特徴です。表面の│
		かします。たれば、何らかな祝聞工で元が強く及引するのが特徴です。祝聞の
ر <u>ا</u> 13		(光が当たったとき) 認識できます。
ように		目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と     見なされます。
9		制章 11 ~ 《 / 坟 莱 F 、 40 / 坟 )。
~		測定ルーペ (倍率 5~10 倍):   測定ルーペを使って、発見された加圧跡と光沢のある痕跡をより詳細に調べ
		て、評価できます。
		触感検査 (指で):
		使用しているエンドカットストッパーの範囲で、特に加圧痕が部材にないか指   で調べます。
	判断基準	エンドカットストッパーが縁材テープに接したり、スライドしたりする範囲
		で、指定の測定方法を使用し、加圧跡と光沢のある痕跡が視覚的にも触覚的に
		も認められないこと。


2022年9月9日

### 13.8 保護フィルムの損傷なし

品質特徴	保護フィルムの損傷なし
定義	縁材テープに保護フィルムがある場合は、エンドカットプロセス中にボロボロ
	になったり、破れたり、垂れ下がったりしてはなりません。保護フィルムに損
	傷がないことが重要です。これは、特にエンドカットユニットでエンドカット
	ストッパーを引くときに発生します。
規格	-
測定ツール	実用的 - 主観的:
	● 補助具を使わない目視検査
測定方法	補助具を使わない目視検査:
	部材のエンドカットの範囲を、明るい照明のもと補助具を使わずに目視で確認
	します。
	目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と
	見なされます。
skal bla* ++ 3#+	
判断基準 	補助具を使わない目視検査:
	この目視検査では、2 つの状態で評価します。
	│ ● OK = 保護フィルムに損傷なし、接着に問題なし
	● NG = 保護フィルムに損傷あり、または接着に問題あり
	定義 規格 測定ツール

31/55 ページ 2022 年 9 月 9 日

# <u>14. ラウンドトリミング</u>





2022年9月9日

#### 14.1 ラウンドトリミングの平行度

	ㅁ 두두 나는 생님	ニー・ドーロットがの立に中
رم.	品質特徴	ラウンドトリミングの平行度
	定義	ラウンドトリミングの垂直プロファイル (半径、面取りなど) で部材高さ全体
		の平行度を評価します。
₩		垂直プロファイルの平行度は、2 つの切断エッジが部材高さ全体にわたって同
巨		じプロファイル幅で平行に伸びていることを表します。
		してロングーが幅で下回に伴びていることを扱うよう。
	 . 規格	_
	測定ツール	実用的 - 主観的:
	別たソール	
		● 補助具を使わない目視検査
		● 測定ルーペ (倍率 5~10 倍)
		理論的 - 客観的:
		● デジタル顕微鏡
	測定方法	平行度の評価に、高さ 38 mm 以上の部材を使用します。
		補助具 / 測定ルーペを使わない目視検査:
		部材の垂直プロファイルの平行度を、明るい照明のもと確認します。目視検査
7		では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と見なされ
うに		ます。
4		
9		デジタル顕微鏡:
کت		アンアル頭機能:   客観的で再現性のある結果を得るために、デジタル顕微鏡を使用することもで
		各就的で特殊性のめる相来を持るために、アンダル戦隊競を使用することもで
		(a) x y o
	 判断基準	
	刊断基华 	補助具 / 測定ルーペを使わない目視検査:
		ラウンドトリミング後、部材高さ全体にわたって、平行度の偏差が視覚的に認
		められないこと。
		デジタル顕微鏡:
		縁材テープのプロファイルにおいて、部材高さ全体で平行度の偏差が 0.05 mm
		以上ないこと。

2022年9月9日

### 14.2 起伏

	品質特徴	起伏
何を?	定義	切削加工による起伏とは、平でない部分や表面の凹凸のことです。 この起伏は、工具の刃先が平らに出る範囲により発生します。つまり、プロファイル (半径、面取りなど) が広すぎることで、2 つのエッジ範囲 (半径など) が波打ちます。
		正確な半径を得るには、目的の半径に適したツールを使用することが重要です。
	規格	-
	測定ツール	実用的 - 主観的:
		理論的 - 客観的:
	測定方法	補助具を使わない目視検査: プロファイルの直線部分を明るい照明のもと確認します。目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と見なされます。
どのように?		光漏れ測定 - 直定規 / 直角定規: 直定規や直角定規を使うと、起伏をよりよく確認できます。
		測定ルーペ (倍率 5~10 倍): 垂直および水平の部材プロファイルを明るい照明のもと 90°の角度から測定 ルーペ (倍率 5~10 倍) で検査します。
		デジタル顕微鏡: 客観的で再現性のある結果を得るために、デジタル顕微鏡を使用することもできます。
	判断基準	目視 / 測定ルーペ / デジタル顕微鏡: 起伏が視覚的に認められないこと。
		光漏れ測定 - 直定規 / 直角定規: 縁材テープと直定規の間から漏れる光を視覚的に評価します。動きのない直線 プロファイルの場合、光漏れも起伏も (直定規などで) 認められないこと。

34/55 ページ 2022 年 9 月 9 日

### 14.3 刃跡

	品質特徴	部材垂直部分の刃跡
何を?	定義	ラウンドトリミングのルーター加工された垂直部分は、刃跡と呼ばれる加工 跡を特徴とします。多刃ツールの場合、各刃で公差があるためルーター面には どれか 1 つ刃の跡のみが付きます。各刃跡の間隔は、ツール送りによって形 成されます。 スクレーパーがないため、これらを均等化することはできず、刃跡が垂直部分、 特にコーナー (上下のボール) に残ります。
	規格	-
どのように?	測定ツール	実用的 - 主観的:
		理論的 - 客観的: <ul> <li>デジタル顕微鏡 (暗視野照明 / 画像加工)</li> <li>接触式検査</li> <li>測定機 (KMG)</li> <li>輪郭測定機</li> <li>光学的 (カメラ / レーザー)</li> </ul>
	測定方法	目視および触感検査 (指で): フォーマットされた狭面全体の垂直部分を視覚的に、さらに触覚的に評価します。目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と見なされます。触感検査では、狭面の表面を指先でなぞって、刃跡を確認します。
		こする (+ 手動測定): その際、例えば黒鉛の棒を使用します。切断エッジ表面に圧力を加えてこすると、色の粒子が刃跡に付着します。(刃跡の幅が均等な場合、開始点と終了点を決定する際の不確実性を平均化により減らすため、複数の線を確認する必要があります。)
		顕微鏡: 目視検査と同じように、部材の垂直部分の刃跡をデジタル顕微鏡 (暗視野照明など) で検査できます。さらに、刃跡長さを測定して、記録できます。
	判断基準	刃跡が、プロファイルの垂直方向の高さ全体 (半径、面取りなど) において非常にわずかにある場合のみ許容されます。コーナーでは、プロファイルがチップで構成されないように、各プロファイルが均等になっているように注意してください。コーナーの曲線では、これが丸みを帯びていると主観的に認識できることが特に重要です。

2022年9月9日

### 14.4 振り上がりによるビビリマーク

<i>د</i> .	品質特徴	振り上がりによるビビリマーク
	定義	ラウンドトリミングの振り上がりと振動により (システムの剛性が不十分な
		ためなど) 送り方向に対して垂直にできるプロファイル上 (半径、面取りな
₩		ど) のマーク。
回		このビビリマークは、木製縁材テープの静止摩擦が高いことにより、水平方
		向にのみ発生します。
	規格	-
	測定ツール	実用的 - 主観的:
		● 補助具を使わない目視検査
		● 測定ルーペ (倍率 5~10 倍)
ر.		● こする (+ 手動測定)
17		
10		理論的 - 客観的:
40		● デジタル顕微鏡
らえ		● KMG 測定機
		● 輪郭測定機
	測定方法	14.3 章「刃跡」を参照
	判断基準	振り上がりによるビビリマークが認められないこと。

2022年9月9日

### 14.5 加工粗さ

	品質特徴	加工粗さ (スリップ効果 PP)
	定義	指定の刃で加工する場合、ラウンドトリミングの表面の粗さ (刃跡、歯の噛
		み合いの痕跡、繊維、溝など) は、刃の凹凸によって発生し、プロファイル
		にカッティングマークとして現れます。
何を?		ABS や木製のエッジの場合は加工跡やカッティングマークが現れますが、PP のエッジの場合はその材料特性ゆえに滑る傾向があります。正しい切断速度 / 回転数 / ツール回転方向 (GLL / GGL) で行うことでこれを抑えることができます。
		-
	測定ツール	実用的 - 主観的:
		● 触感検査 (指で)
		● 測定ルーペ (倍率 5~10 倍)
		● 直定規での光漏れ測定
٠.		用:A. 放 克粗 的 .
5125		理論的 - 客観的:   ● 輪郭測定機
74		● 粗さ測定機
らえ		● 福ご湖足協 ● デジタル顕微鏡 (+ 暗視野照明)
7		- / / / / / / M M ( PI D エ M で ) /
	測定方法	14.2 章「起伏」を参照
	判断基準	指定された測定方法により、プロファイル全体で、カッティングマークやス
		リップ効果の形で加工粗さが視覚的に認められないこと。

### 14.6 垂直の加工移行部

	品質特徴	垂直の加工移行部
	定義	上から下へ向かう垂直部分の移行部の評価。これは、垂直部分のルーター加工
		が 2 つの装置または個別の加工で行われるユニットに適用されます (FK11、
		FF32、FK21 など)。
		上部ユニットと下部ユニットの用途や設定が異なると、プロファイル特性 (半
		径、面取りなど) や変わり目の外観 (上部半径が下部半径よりも大きいなど)
		が異なる可能性があります。
何を?		
		図 7 - 垂直の加工移行部
	規格	-
	測定ツール	実用的 - 主観的:
		● 補助具を使わない目視検査 (2.45 to 1.5
		● 測定ルーペ (倍率 5~10 倍)
		● 直定規 / 直角定規による光漏れ測定
		理論的 - 客観的:
		<b>・ デジタル顕微鏡</b>
		● 測定機 (KMG)
		● 輪郭測定機
	測定方法	垂直の狭面の高さにわたって、プロファイルの加工移行部を評価するには、パ
(1.2		ネル厚さが 38 mm 以上である必要があります。そうでない場合、潜在的な欠
10		陥が目立たなくなります。
9 %		サルロナ はな かい ロ 切め 木
لدّ		│補助具を使わない目視検査: │プロファイルの移行部の均一性は、明るい照明のもと垂直にルーター加工され│
		プロンディルの移行品の場合には、明るで無明のもと亜直にループー加工され     たライン / 半径で調べます。目視検査では、50 cm の視距離から 30 秒以内
		に肉眼で見える場合に不良と見なされます。
		測定ルーペ (倍率 5~10 倍) / 直定規 / 直角定規:
		測定ルーペ (旧年 3 * 10 旧)/
		く調べます。
	判断基準	ルーター加工したプロファイルのラインを、垂直部分の移行部で評価します。
		垂直部分で変わり目が認められないこと。さらに、突起が視覚的にも触覚的に
		も認められないこと。均等なラインも前提条件です。

2022年9月9日

### 14.7 水平の加工移行部

	= 22.41 Mg	
	品質特徴	水平の加工移行部
何を?	定義	部材前後の輪郭をラウンドトリミングする際の、部材の上エッジと下エッジのルーター加工(ファインルーター加工またはマルチルーター加工)の移行部の評価。これは、前部と後部の部材輪郭のみを加工するユニット (FK30など)に適用されます。 前部と後部の部材輪郭をラウンドトリミングするときに、不要な変わり目が発生する場合があります (例えば、不適切な走行ポイント、不適切な圧力、
		不適切な機械設定が原因)。ラウンドトリミングの輪郭は、縦方向のエッジの輪郭に合っている必要があります。さらに、表面層 (特にコーナー範囲)の損傷は避けてください。
		図 8 - 水平の加工移行部
		-
	測定ツール	実用的 - 主観的:
		● 補助具を使わない目視検査
		● 測定ルーペ (倍率 5~10 倍)
		● 直定規 / 直角定規による光漏れ測定
		理論的 - 客観的:
23		● デジタル顕微鏡
51		● 測定機 (KMG)
どのよ		● 輪郭測定機
		14.6 章「垂直の加工移行部」と同様。
	判断基準	ルーター加工したプロファイルのライン (半径、面取りなど) を、水平部分
	· · · · · · ·	の移行部で評価します。指定の測定ツールを使用し、水平部分に変わり目や
		突起が視覚的にも触覚的にも認められないこと。均等なラインであること。
		さらに、表面層 (特にコーナー範囲) に損傷がないこと。

2022年9月9日

# 14.8 縦横エッジの面一

	品質特徴	縦横エッジの面一
何を?	定義	縦方向と横方向のエッジが接着された部材の場合、ラウンドトリミング後に 2 つの縁材テープの間に変わり目が発生します。これは、横方向のエッジへ のプロファイル終端の範囲にあります。 正確なプロファイル終端を得るには、目的のプロファイルに適したツールを 使用することが重要です。
	規格	-
	測定ツール	実用的 - 主観的:
		理論的 - 客観的:
	測定方法	目視および触感検査 (指で): 部材を明るい照明のもと、縦と横エッジの移行部を評価します。目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と見なされます。さらに触感検査も行います。
どのように?		図 9 - 縦横エッジの面一
		直定規 / 直角定規による光漏れ測定: 直定規を使って、見つけた加工移行部を正確に特定し、詳しく調べます。
	判断基準	突起があっても、約 7 日間保管すると消えることがあります。
		目視および触感検査 (指で): 縦横エッジの移行部で、明らかな突起が視覚的にも触覚的にも認められない こと。
		直定規 / 直角定規による光漏れ測定: 縦横エッジの移行部で、光漏れにより明らかな突起が認められないこと。
		デジタル顕微鏡 / 輪郭測定機 / 測定機 (KMG): 突起の許容範囲 ± 0.05 mm。

2022年9月9日

# 14.9 ラウンドトリミングでの加圧跡と光沢のある痕跡

	品質特徴	ラウンドトリミングでの加圧跡と光沢のある痕跡
	定義	ラウンドトリミングユニットのならいローラとスライドシュー (プローブエレメント) で部材をスキャンした際の、縁材テープの加圧跡と光沢のある痕跡による形状偏差。
何を?		加圧跡と光沢のある痕跡の違い:  • 加圧跡は、開始圧力 / 衝撃およびならいローラの点状の負荷が原因で、特に回転スキャン (ならいローラ) で発生します。これは、特に柔らかい縁材テープ素材 (紙など) で発生します。  • 光沢のある痕跡は、接近シューが前面を滑っているときや、狭面の側面に触れているときに生じます。暗く光沢のある色合いでこの効果が強調されることに注意してください。
	規格	-
	測定ツール	実用的 - 主観的:
うに?	測定方法	補助具を使わない目視検査: 部材の縁材テープを、逆光 / 散乱光 (自然光 / 直射日光) で視覚的にチェックします。光沢は、滑らかな表面上で光が強く反射するのが特徴です。反射の方向で (光が当たったとき) 加圧跡と光沢のある痕跡が見えます。目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と見なされます。
どのよ		測定ルーペ: 測定ルーペを使って、発見された加圧跡と光沢のある痕跡をより詳細に調べて、評価できます。
		触感検査 (指で): 使用しているエンドカットストッパーの範囲で、特に加圧痕が部材にないか 指で調べます。
	判断基準	ならいが縁材テープに接したり、スライドしたりする範囲で、指定の測定 方法を使用し、加圧跡と光沢のある痕跡が視覚的にも触覚的にも認められ ないこと。

2022年9月9日

# 14.10 亀裂 (木製縁材の場合)

	品質特徴	亀裂 (木製縁材の場合)
	定義	材料や切断形状、工具の摩耗、繊維の切断方向に応じて発生する、目や指
		で感じられるプロファイル範囲の突出した木屑、繊維、縁材テープの亀裂
ري.		や剥離。
百		ラウンドトリミング中、亀裂は木製 (特に長繊維の木材) のエッジ材での
_		み発生します。これは、同期ルーター装置に変更することで防止すること
		ができます。
	  規格	-
	測定ツール	実用的 - 主観的:
		● 補助具を使わない目視検査
		● 触感検査 (指で)
	測定方法	補助具を使わない目視検査:
		ルーター加工された部材のプロファイルを明るい照明のもとで確認しま
		す。目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に
(1)		不良と見なされます。
10		   触感検査 (指で):
98		│
کڈ		古代校園に加えて、収留を機構とどに指えてなてることで、電袋の構造に
		に引っ掛かり、感じ取りやすくなります (猫の毛効果)。
		( ) = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
	判断基準	補助具を使わない目視検査 / 触感検査:
		ラウンドトリミングされたプロファイル全体で、亀裂が視覚的にも触覚的
		にも認められないこと。

2022年9月9日

# 14.11 保護フィルムの損傷なし

	口纸灶狮	保護コスルノの場合なり
	品質特徴	保護フィルムの損傷なし
	定義	縁材テープに保護フィルムがある場合は、ラウンドトリミングでボロボロ
		になったり、破れたり、垂れ下がったりしてはなりません。保護フィルム
みつ		に損傷がないことが重要です。
回		これは、特に接着力の低いフィルムで、ユニットを部材表面に使用すると
		きに発生します。
	規格	  -
	測定ツール	実用的 - 主観的:
	<i></i>	● 補助具を使わない目視検査
		一門の人で区がなる。日の人生
	測定方法	補助具を使わない目視検査:
		部材のラウンドトリミングの範囲を、明るい照明のもと補助具を使わずに
7.5		目視で確認します。目視検査では、50 cm の視距離から 30 秒以内に肉眼
2		で見える場合に不良と見なされます。
4		C元んの物口に小反こ元などれなり。 
どの	判断基準	
	1341227	目視検査 (視覚的評価) では、2 つの状態で評価します。
		    ● OK = 保護フィルムに損傷なし、接着に問題なし
		● NG = 保護フィルムに損傷あり、または接着に問題あり
		- パン 内膜グリルーに反例の パーのには反角に同胞の ノ

**HE HOMAG** 

2022年9月9日

# 15. プロファイルおよび接着接合部のスクレーパー

# 15.1 プロファイルスクレーパー

### 15.1.1 プロファイル終端の均一性

	品質特徴	プロファイル終端の均一性
	定義	上下プロファイルで同一の形状になっていることを考慮した、狭面の中央に向かって均一に延びるプロファイル終端。 部材図面にある各設定と縁材に合ったツールプロファイルが基本となります。
何を?		基材 縁材
	規格	-
	測定ツール	実用的 - 主観的:
ように?	測定方法	測定ルーペ (倍率 5~10 倍) 「14.2」章を参照 ノギス / デプスゲージ: デプスゲージを使用し、部材全長にわたって各プロファイルの深さを 4
የ <i>ው</i> ጃ		つ以上の測定ポイントで測定し、反対側のプロファイルと比較します。 デジタル顕微鏡: 「14.2」章を参照
	判断基準	指定の測定方法で、プロファイルの狭面方向へのラインが均一であること。さらに、上部プロファイルと下部プロファイルが互いにずれていないこと (最大偏差 10 %)。  例: 半径 1 mm → 最大偏差 0.1 mm (= 10 %) または
		面取り 3 mm → 最大偏差 0.3 mm (= 10 %)

# 15.1.2 表面の質

	品質特徴	表面の質
を ぐ	定義	プロファイルスクレーパー加工の後、プロファイル上下の水平部分に、
向		加工跡としてトリミングツールの刃跡がないこと。
	規格	-
	測定ツール	実用的 - 主観的:
		● 補助具を使わない目視検査
		● 触感検査
	測定方法	補助具を使わない目視検査:
		部材のプロファイルの表面品質を明るい照明のもと、ミラーと逆光を使っ
7.		て視覚的に調べます。目視検査では、50 cm の視距離から 30 秒以内
10		に肉眼で見える場合に不良と見なされます。
40		<b>6</b> 九 □ □ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ر ا ا		触感検査:
		触感検査では、水平のプロファイルの表面を指先でなぞって、刃跡を確   認します。
		iiis し み y o
	   判断基準	プロファイルスクレーパー加工後、水平部分の全長にわたって刃跡や加
	1	工跡が、視覚的または触覚的に認められないこと。
		全長にわたって非常に滑らかな表面になっていること。

# 15.1.3 亀甲割れ

	品質特徴	亀甲割れ
	定義	プラスチックのエッジは、スクレーパー加工時に「亀甲割れ」し、表面
		がマットになることがあります。特に暗い色の縁材テープの場合は、さ
ر		らに色堅牢度が低下します。
₩		スクレーパー加工時には、縁材テープの切断面に亀甲割れが発生するこ
向		ともあり、白や灰色の不要な輝きを放つ原因になります。
		<b>亀甲割れを防ぐには、推奨されるチップ厚 (15.1.4 章) の設定を守って</b>
		ください。
	+8+4	
	規格	
	測定ツール	実用的 - 主観的:
		● 補助具を使わない目視検査
		+++++++++++++++++++++++++++++++++++++
	測定方法	補助具を使わない目視検査:
7.		部材のプロファイルに亀甲割れがないか、明るい照明のもと、ミラーと
10		逆光を使って視覚的に調べます。
4		目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に
9 لخ		不良と見なされます。
~	alog block data that	
	判断基準	補助具を使わない目視検査:
		加工されたプロファイルの表面と狭面で色の違いができるだけないこと。
		亀甲割れが視覚的に認められないこと。

2022年9月9日

# 15.1.4 スクレーパーチップの発生

	品質特徴	スクレーパーチップの発生
ر.	定義	変色や亀甲割れを防ぎ、ルーター加工時の刃跡を減らして最適な結果を
₩		得るために、プロファイル全体にわたってスクレーパーチップの発生を
向		評価する必要があります。
	 . 規格	-
	測定ツール	実用的 - 主観的:
		● 触感検査
		実用的 - 客観的:
		• J # Z
		• マイクロメータ
		触感検査:
		削られたチップの厚さと幅のラインが均一か、部材全長にわたって触っ
		てチェックします。
ر.		
どのように		ノギス / マイクロメータ:
		全長にわたるチップの厚さと幅の測定。これは、上部と下部のチップに     行います。
		1160 8 9 0
~	判断基準	触感検査:
		縁材テープの材質に応じて、全長にわたって可能な限り同じ厚さと幅、
		そして滑らかなチップになっていること。さらに、チップができるだけ
		カールやロールアップしないようにすること。
		   ノギス / マイクロメータ:
		ノキス / マイグロメータ:   測定技術上、チップの厚さに次の公差が適用されます。
		たえばエ、ノノンの序でに外の立左が週間でもよう。
		規定チップ厚 = 0.1 mm~0.15 mm
		(例外: PMMA 規定チップ厚 = 0.06 mm~0.08 mm)

2022年9月9日

### 15.1.5 プロファイルならい時の加圧跡と光沢のある痕跡

	品質特徴	プロファイルならい時の加圧跡と光沢のある痕跡
何を?	定義	ならいローラとエンドカットストッパー (プローブエレメント) を使った部材スキャン時の、縁材テープの加圧跡と光沢のある痕跡による形状偏差。これらは、材料の特性だけでなく、ならい圧力、接近時の衝撃、引き、潤滑剤の塗布、水平接触、および縁材テープ材料のクラウニングに依存します。 加圧跡と光沢のある痕跡の違い:
	+8 +47	<ul> <li>加圧跡は、開始圧力/衝撃およびならいローラの点状の負荷が原因で、特に回転スキャン(ならいローラ)で発生します。これは、特に柔らかい縁材テープ素材(紙など)で発生します。</li> <li>光沢のある痕跡は、スライドスキャン(スライドシュー)時または前面のスキャン時に発生します。暗く光沢のある色合いでこの効果が強調されることに注意してください。</li> </ul>
	_規格 _ 測定ツール	-   実用的 - 主観的:
	別足ノール	乗用的 - 主観的.
どのように?	測定方法	補助具を使わない目視検査 (明るい部屋): 部材の縁材テープを、逆光 / 散乱光 (自然光 / 直射日光) で視覚的にチェックします。光沢は、滑らかな表面上で光が強く反射するのが特徴です。反射の方向で (光が当たったとき) 加圧跡と光沢のある痕跡が見えます。目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と見なされます。
		測定ルーペ (倍率 5~10 倍) 測定ルーペを使って、発見された加圧跡と光沢のある痕跡をより詳細に 調べて、評価できます。
	判断基準	ならいが縁材テープに接したり、スライドしたりする範囲で、指定の測定方法を使用し、加圧跡と光沢のある痕跡が視覚的にも触覚的にも認められないこと。

# 15.1.6 均一な加工

	品質特徴	均一な加工
	定義	均一な加工では、部材全長にわたってへこみや段差がないこと、均一な
		表面になっていることを確認します。
₩ ~		ダブル / トリプルローラならいの場合は、前エッジと後エッジに特別な
巨		注意を払います。
		これは、特にならい圧力と引きの影響を受ける可能性があります。 
	規格	-
	測定ツール	実用的 - 主観的:
		● 補助具を使わない目視検査 
	測定方法	補助具を使わない目視検査 (明るい部屋):
ر.		部材の縁材テープを、逆光 / 散乱光 (自然光 / 直射日光) で視覚的に
IJ		チェックします。光沢は、滑らかな表面上で光が強く反射するのが特徴
んよ		です。反射の方向で (光が当たったとき) へこみや段差が見えます。
1 G		目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に
لَدُ		不良と見なされます。 
	   判断基準	   補助具を使わない目視検査:
		部材全長にわたって、プロファイル (半径、面取りなど)、特に前エッジ
	1	,
		と後エッジで、へこみや段差が視覚的に認められないこと。

# 15.1.7 起伏

	品質特徴	起伏
何を?	定義	剛性の欠如と狭面方向のプロファイル (半径、面取りなど) が深すぎることによる振動による起伏。これらは特に、引き動作によって開始振動として前エッジ範囲で発生します。この起伏は、ならい圧力、引き、チップ厚の影響も受けます (大きい半径と厚いチップ → 起伏が大きくなる)。 起伏を防ぐには、推奨されるチップ厚 (15.1.4 章) の設定を守ってください。
	規格	-
どのように?	測定ツール	実用的 - 主観的:
	測定方法	目視検査: 明るい照明のもと、部材の垂直および水平のプロファイルラインを確認します。目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と見なされます。 ダイヤルゲージ: プロファイルスクレーパーユニットの引きを測定するため、ダイヤルゲージをユニットにセットします (標準値 0.5 mm~0.7 mm)。 ノギス: ノギスは、15.1.4 章に従ってチップの厚さと幅を測定するために使用します。
	判断基準	目視検査: プロファイルの水平方向全体で、起伏が視覚的に認められないこと。

### 15.1.8 後エッジのチップ除去

	品質特徴	後エッジのチップ除去
何を?	定義	特に縦方向の加工時に、後エッジで取り除いたチップが正確に除去され
		るか注意する必要があります。
		最適なチップ除去の前提条件として、15.1.4 章で指定されているスク
-		レーパーチップの品質特徴が適用されます。
		-
	測定ツール	実用的 - 主観的:
		• 補助具を使わない目視検査
ر.	測定方法	補助具を使わない目視検査:
17		部材を明るい照明のもと、後ろエッジに特に注意して調べます。目視検
たよ		査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不良と
そのそ		見なされます。
1	  判断基準	補助具を使わない目視検査:
	116127	後エッジのチップが面一で除去されていること。さらに、塗装の剥がれ
		や亀甲割れによる亀裂や剥離箇所がないこと。

2022年9月9日

51/55 ページ

### 15.1.9 縁材から表面層への移行部

	品質特徴	縁材から表面層への移行部
何を?	定義	縁材から基材の表面層への移行部、特に接着接合部の範囲が均一になっ
		ている必要があります。これは、上部の移行部と下部の移行部の両方に
		適用されます。
		基材 縁材から表面層 への移行部 図 11 - 縁材から表面層への移行部
		_
	測定ツール	実用的 - 主観的:
		● 触感検査
		● 測定ルーペ (倍率 5~10 倍)
	測定方法	触感検査:
515		触感検査では、縁材から表面層への移行部の表面を指先でなぞって、凹
		凸を確認します。
76		測定ルーペ (倍率 5~10 倍):
らえ		縁材から表面層への移行部を明るい照明のもと 90°の角度から倍率 5~
		10 倍で検査します。
	Anther + :#	
	判断基準	│ 縁材から基材の表面層への移行部が、同一平面上にあること。指定の測│ │ 定方法により、段差や突起が視覚的にも触覚的にも認められないこと。
		たり広により、段差で失起が悦見的にも魅見的にも認められないこと。     さらに、この移行部で表面層が損傷していないこと。

# 15.2 接着接合部のスクレーパー

# 15.2.1 表面層の損傷なし

何を?	品質特徴	表面層の損傷なし
	定義	接着接合部のスクレーパーを深くかけたことによる、表面層の目に見
		える損傷。そこでは、破損や損傷、引っかき傷、表面構造の変化が発
		生する可能性があります。
		前エッジと後エッジの範囲に特に注意を払い、この両範囲が同じに
		なっている必要があります。
		_
	<u>   ^元元</u>   測定ツール	実用的 - 主観的:
	AL 2 10	● 補助具を使わない目視検査
		<ul><li>● 触感検査 (指で)</li></ul>
		7.2.079.22 (7.1.5)
どのように?	測定方法	補助具を使わない目視検査:
		基材表面から縁材の移行部を明るい照明のもと、前エッジと後エッジに
		特に注意して視覚的に検査します。目視検査では、50 cm の視距離から
		30 秒以内に肉眼で見える場合に不良と見なされます。
		   触感検査 (指で):
		福心保証 (16で):   目視検査に加えて、加工された表面を指先でなぞって、表面層に損傷が
		ないか確認します。
	判断基準	加工された表面全体で、表面層に損傷が視覚的にも触覚的にも認められ
		ないこと。

### 15.2.2 接着接合部の範囲に接着剤の残渣がない

何を?	品質特徴	接着接合部の範囲に接着剤の残渣がない
	定義	接着接合部のスクレーパーによって除去されなかった、接合範囲にあ
		る目に見える接着剤残渣。さらに、縁材の余剰が最小限に抑えられて
		いるか注意する必要があります。
	規格	-
	測定ツール	実用的 - 主観的:
		● 目視検査
		● 触感検査
		<ul><li>● 測定ルーペ</li></ul>
	測定方法	補助具を使わない目視検査:
		基材表面から縁材の移行部を明るい照明のもと、前エッジと後エッジに
ر.		特に注意して視覚的に検査します。目視検査では、50 cm の視距離から
に		30 秒以内に肉眼で見える場合に不良と見なされます。
4		触感検査 (指で):
6		目視検査に加えて、加工された表面を指先でなぞって、表面層に損傷が
لَدُ		ないか確認します。
		測定ルーペ (倍率 5~10 倍):
		測定ルーペ (旧平 0~10 旧).   測定ルーペを使って、発見された接着剤残渣をより詳細に調べて、評
		価できます。
	判断基準	加工された面全体で、接着剤の残渣と縁材テープの余剰が視覚的にも
		触覚的にも認められないこと。

2022年9月9日

# 15.2.3 接着接合部スクレーパー時の光沢のある痕跡

	品質特徴	接着接合部スクレーパー時の光沢のある痕跡
何を?	定義	接着接合部スクレーパーユニットのならいシュー (プローブエレメント)
		で部材をスキャンする際に発生する、表面層の光沢のある痕跡という表
		面の損傷。
		これらは、材料の特性だけでなく、ならい圧力、接近時の衝撃、引き、
		潤滑剤の塗布、水平接触、および表面のカッピングに依存します。
		光沢のある痕跡は、スライドスキャン (スライドシュー) 時に発生しま
		す。暗く光沢のある色合いでこの効果が強調されることに注意してくだ
		さい。
		_
		実用的 - 主観的:
		● 補助具を使わない目視検査
		● 測定ルーペ (倍率 5~10 倍)
		(III )
	測定方法	補助具を使わない目視検査 (明るい部屋):
		部材の表面層を、逆光 / 散乱光 (自然光 / 直射日光) で視覚的にチェッ
		│ クします。光沢は、滑らかな表面上で光が強く反射するのが特徴です。 │
ر.		反射の方向で (光が当たったとき) 加圧跡と光沢のある痕跡が見えます。
51		目視検査では、50 cm の視距離から 30 秒以内に肉眼で見える場合に不
40		良と見なされます。
たの こ		測定ルーペ (倍率 5~10 倍):
		測定ルーペ (旧華 500 10 旧).   測定ルーペを使って、発見された加圧跡と光沢のある痕跡をより詳細に
		調べて、評価できます。
		шт СС піш СС бу у
	判断基準	ならいが縁材テープに接したり、スライドしたりする範囲で、指定の測
		定方法を使用し、加圧跡と光沢のある痕跡が視覚的にも触覚的にも認め
		られないこと。

### 15.2.4 保護フィルムの損傷なし

何を?	品質特徴	保護フィルムの損傷なし
	定義	表面層に保護フィルムがある場合は、接着接合部のスクレーパーでボロボロ
		になったり、破れたり、垂れ下がったりしてはなりません。保護フィルムが
		剥がれていないことが重要です。
		これは、特に接着力の低いフィルムの場合やユニットを部材表面に使用する
		ときに発生します。
	規格	-
	測定ツール	実用的 - 主観的:
		● 補助具を使わない目視検査
どのように?	測定方法	補助具を使わない目視検査:
		部材のラウンドトリミングの範囲を、明るい照明のもと補助具を使わずに目
		視で確認します。目視検査では、50 cm の視距離から 30 秒以内に肉眼で
		見える場合に不良と見なされます。
	stat bla* ++ 5#+	
	判断基準	補助具を使わない目視検査:
		視覚的評価では、2 つの状態で評価します。
		- ログー 収装フィルノに投作なり   技美に問題なり
		● OK = 保護フィルムに損傷なし、接着に問題なし
		● NG = 保護フィルムに損傷あり、または接着に問題あり